В том же 1999 г. (и более того, в том же номере «Записок Королевского общества») Эрика Хагельберг, бывшая студентка оксфордской группы, и ее коллеги высказали свое предположение в пользу рекомбинации митохондриальных генов. Они нашли у нескольких неродственных групп, населяющих тихоокеанский остров Нгуна (архипелаг Вануату), одну и ту же редкую мутацию. Было четко видно, что митохондриальная ДНК представителей этих групп унаследована из разных источников, и тем не менее одна и та же мутация встречалась многократно. Значит, она либо возникала несколько раз независимо (что невероятно), либо возникла один раз, а потом была передана в другие популяции (что возможно только за счет рекомбинации). Однако и тут доктрина устояла. Загадочная мутация оказалась связана с неправильной настройкой секвенатора, который почему-то выдавал результат со смещением на 10 пар оснований. После внесения поправок она исчезла. Авторам статьи пришлось опубликовать опровержение, и сама Хагельберг теперь называет эту досадную историю своей «печально известной ошибкой».
К 2001 г. рекомбинация митохондриальной ДНК выглядела, мягко говоря, сомнительно. Два крупных исследования были опровергнуты, и хотя авторы обеих статей настаивали на том, что часть их данных все же подает повод к сомнениям, всем было понятно, с чем связаны такие заявления: надо же как-то спасать подмоченную репутацию. Казалось, отсутствие рекомбинации митохондриальной ДНК можно считать доказанным.
Однако вскоре появились свежие сомнения. В 2002 г. Марианна Шварц и Джон Виссинг (Университетская больница Копенгагена) сообщили, что один из их пациентов, двадцативосьмилетний молодой человек с митохондриальным нарушением, унаследовал часть митохондриальной ДНК от отца и имел смесь материнской и отцовской ДНК — ту самую гетероплазмию, которой так страшились приверженцы ортодоксальной доктрины. Гетероплазмия носила мозаичный характер: митохондрии в мышечных клетках имели 90 % отцовской и лишь 10 % материнской ДНК, а клетки крови содержали почти 100 % материнской ДНК. Впервые было однозначно показано наследование отцовской митохондриальной ДНК у людей. Стало ясно, что отцовская ДНК действительно может «просачиваться» в яйцеклетку, в данном случае ее заметили только потому, что она вызвала болезнь. Вопрос встал ребром: если в одном человеке уживаются две митохондриальные популяции (от отца и от матери), возможна ли рекомбинация между ними?
Ответ простой: да. В 2004 г. группа Константина Храпко (Гарвард) сообщила в журнале Science о том, что 0,7 % разнородной митохондриальной ДНК в мышцах пациента имеет следы рекомбинации. Итак, рекомбинация митохондриальной ДНК человека возможна. Но это еще не говорит о том, что рекомбинантные гены передаются потомству. Рекомбинация в митохондриях мышечных клеток — пожалуйста, сколько угодно, но чтобы рекомбинантная форма была передана по наследству, рекомбинация должна произойти в оплодотворенной яйцеклетке. Пока что никаких свидетельств этого нет, хотя, возможно, дело в том, что их никто не искал. В целом статистика популяционных исследований говорит о том, что такая рекомбинация случается крайне редко. Очень редкие факты рекомбинации не рушат стройную теорию, но могут объяснить ряд загадочных отклонений в генетической организации.
Тем не менее я хотел подчеркнуть вот что: в эволюционном масштабе некоторый уровень рекомбинации митохондриальной ДНК возможен. Что это: странный выверт эволюции или нечто, исполненное глубокого смысла? Мы вернемся к этому вопросу чуть позже. Сначала давайте рассмотрим другие случаи расхождения фактов с ортодоксальной доктриной.
Митохондриальная ДНК годится не только для реконструкции человеческой предыстории. Она широко используется в криминалистике, особенно при идентификации человеческих останков. Этот метод тоже основан на допущении, что наследуется лишь материнская митохондриальная ДНК. Наверное, самый известный случай применения этого метода — это идентификация останков последнего российского императора Николая Второго, расстрелянного в 1918 г. вместе с семьей и слугами. В 1991 г. из могилы под Екатеринбургом были извлечены девять скелетов, в том числе, предположительно, скелет самого императора.
На помощь призвали генетиков. Оказалось, что митохондриальная ДНК предполагаемого императора не вполне соответствует митохондриальной ДНК его ныне здравствующих родственников. Как ни странно, в исследованном образце была обнаружена гетероплазмия. Решить вопрос позволила эксгумация тела младшего брата императора, великого князя Георгия Романова, умершего от туберкулеза в 1899 г. Великий князь и последний российский император должны были унаследовать от матери идентичную митохондриальную ДНК, и полное соответствие позволило бы точно сказать, что останки принадлежат Николаю Второму. Соответствие действительно оказалось полным: великий князь тоже был носителем гетероплазмии.
Этот случай привлек внимание общественности к практической пользе митохондриального анализа, однако поднял и несколько щекотливых вопросов, например, как часто встречается гетероплазмия? Она не всегда связана с «просачиванием» в яйцеклетку отцовской ДНК, причиной могут быть и митохондриальные мутации. Предположим, что в ДНК одной из митохондрий возникает мутация. Во время эмбрионального развития размножаются и мутантные, и нормальные митохондрии, а в результате взрослый человек имеет митохондрии с двумя типами ДНК. Это обычно замечают, только когда мутации вызывают болезнь, поэтому реальная частота встречаемости таких мутаций была неизвестна. Практическое значение этого вопроса для судебной медицины не вызывало сомнений, и за тему взялись сразу несколько исследовательских групп. Их результаты, хорошо согласующиеся друг с другом, удивили всех. Гетероплазмия встречается по крайней мере у 10, а возможно, у 20 % людей, и причиной, как правило, являются мутации.