Энергия, секс, самоубийство - Страница 25


К оглавлению

25

Долгое время эволюционное происхождение гидрогеносом было окутано тайной, но ряд их структурных признаков навел Мюллера и других ученых (в особенности стоит упомянуть Мартина Эмбли с коллегами из Музея естественной истории в Лондоне) на мысль о том, что гидрогеносомы родственны митохондриям, вернее, что у них был общий предок. Доказать это было трудно, так как большинство гидрогеносом полностью утратило геном, но тем не менее это удалось сделать. Получается, среди потомков бактерии, вступившей в симбиоз с первой эукариотической клеткой (какой бы она ни была), числятся и митохондрии, и гидрогеносомы. Может быть, говорил Мартин, бактериальный предок митохондрий и гидрогеносом мог выполнять метаболические функции как первых, так и вторых. (В этом вся соль водородной гипотезы.) Таким образом, это была «разносторонняя» бактерия, способная и к кислородному дыханию, и к производству водорода. Мы скоро вернемся к этому вопросу, а пока давайте просто возьмем на заметку вот что: «водородная гипотеза» Мартина и Мюллера утверждает, что именно водородный, а не кислородный метаболизм этого общего предка дал первому эукариотическому организму эволюционное преимущество.

Мартин и Мюллер обратили внимание на один крайне любопытный факт: в клетках эукариот с гидрогеносомами иногда встречаются мелкие метаногены; они когда-то попали внутрь и «загнездились» там. Метаногены тесно прилегают к гидрогеносомам; можно подумать, они с их помощью питаются (рис. 3).

Рис. 3. На этой фотографии видны метаногены (светло-серые) и гидрогеносомы (темно-серые).

Они находятся в цитоплазме значительно более крупной эукариотической клетки — морской инфузории Plagiopyla frontata. Согласно водородной гипотезе, эта тесная метаболическая связь между метаногенами (которым для жизни нужен водород) и производящими водород бактериями (предками митохондрий и гидрогеносом) могла дать начало самой эукариотической клетке: метаногены увеличились в размерах и поглотили производящую водород бактерию


Мартин и Мюллер поняли, что именно так и обстоит дело — эти два организма живут, так сказать, в метаболическом браке. Метаногены уникальны тем, что для производства всех необходимых им органических соединений, а также энергии им нужны углекислый газ и водород, и ничего более. Они присоединяют атомы водорода (H) к молекулам углекислого газа (CO), и в результате получаются базовые строительные блоки, необходимые для производства углеводов, таких как глюкоза (CHO). Из них они могут строить весь ассортимент нуклеиновых кислот, белков и липидов. Они используют водород и углекислый газ также и для производства энергии, выделяя метан в качестве побочного продукта.

Итак, метаногены отличаются метаболическим хитроумием, и тем не менее они постоянно сталкиваются с очень серьезной проблемой, о которой мы уже говорили в главе 1. Беда в том, что, хотя углекислого газа всегда предостаточно, в любом местообитании, где есть кислород, водорода мало, так как водород и кислород взаимодействуют с образованием воды. Это означает, что с точки зрения метаногена все, что производит хоть немного водорода, — это просто подарок судьбы. А гидрогеносомы — подарок вдвойне, потому что в процессе производства собственной энергии они испускают и водород, и углекислый газ — как раз то, что нужно метаногенам. Что еще важнее, гидрогеносомам не нужен кислород — наоборот, они предпочитают его избегать, и они могут функционировать в условиях дефицита кислорода. Неудивительно, что метаногены присасываются к гидрогеносомам, как поросята к свиноматке! Заслуга Мартина и Мюллера в том, что они поняли, что этот тесный метаболический союз мог быть основой симбиотического происхождения эукариотической клетки.

Билл Мартин утверждает, что гидрогеносомы и митохондрии находятся на разных концах малоизученного спектра разнообразия. К вящему удивлению тех, кто знаком с митохондриями только по учебникам, у многих простых одноклеточных эукариот митохондрии работают в отсутствие кислорода. Вместо него такие «анаэробные» митохондрии используют для «сжигания» пищи другие простые соединения, например нитраты или нитриты. В остальном они очень похожи на «обычные» митохондрии и, несомненно, находятся с ними в родстве. Таким образом, спектр простирается от «аэробных» митохондрий вроде наших, которым нужен кислород, До «анаэробных» митохондрий, предпочитающих другие молекулы, скажем, нитраты, и далее до гидрогеносом, которые функционируют иначе, чем обычные митохондрии, но тем не менее родственны им. Существование такого спектра заставляет задуматься о его происхождении. «Как же выглядел общий предок митохондрий и гидрогеносом?» — спрашивает Мартин.

Этот вопрос очень важен для происхождения эукариот, а значит, всех сложных форм жизни как здесь на Земле, так и во всей Вселенной. Поиск общего предка сводится к выбору одного из двух возможных вариантов. Первая возможность: он был сложной бактерией, гораздой на метаболические ухищрения; некоторые из них ее потомки сохранили, а некоторые утратили в процессе адаптации к новым условиям жизни. Если так, то дальнейшая эволюция этих потомков была не прогрессивной, а регрессивной — они упрощались, переходя к узкой специализации. Вторая возможность: общий предок был простой, дышащей кислородом бактерией, чем-то вроде свободноживущего предка Rickettsia. Ее потомки становились все более разнообразны — они не регрессировали, а прогрессировали. Каждый из этих вариантов позволяет сделать конкретные предсказания. В первом случае, если предковая бактерия была метаболически сложной, она могла передавать специализированные гены, например гены, отвечающие за производство водорода, непосредственно своим потомкам. Любые эукариоты, адаптировавшиеся к производству водорода, могли унаследовать гены от этого общего предка, независимо от того, насколько разнообразными они стали впоследствии. Гидрогеносомы встречаются у разных групп эукариот. Если они получили гены, отвечающие за производство водорода, от общего предка, то эти гены должны быть близко родственны, независимо от того, насколько разнообразными стали содержащие их клетки. С другой стороны, если разнообразные группы и унаследовали изначально простые, использующие кислород митохондрии, то им пришлось придумывать разнообразные формы анаэробного метаболизма независимо каждый раз, когда они оказывались в местообитаниях с низким содержанием кислорода. В случае гидрогеносом, гены, отвечающие за производство водорода, должны были независимо возникать в каждом случае (или перемещаться случайно за счет горизонтального переноса генов), а значит, их эволюционная история выглядит столь же разнообразной, как история клеток, в которых они жили.

25